If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(3y^2+9y+9)=378
We move all terms to the left:
3(3y^2+9y+9)-(378)=0
We multiply parentheses
9y^2+27y+27-378=0
We add all the numbers together, and all the variables
9y^2+27y-351=0
a = 9; b = 27; c = -351;
Δ = b2-4ac
Δ = 272-4·9·(-351)
Δ = 13365
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13365}=\sqrt{81*165}=\sqrt{81}*\sqrt{165}=9\sqrt{165}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-9\sqrt{165}}{2*9}=\frac{-27-9\sqrt{165}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+9\sqrt{165}}{2*9}=\frac{-27+9\sqrt{165}}{18} $
| 3y^2+9y+9=0 | | 18/10=19/x | | 5.437^(6x)-3=0 | | 2(2.718282)^(6x)=3 | | 3(y-9)=9y+15 | | (v+4)^2=2v^2+12v-5 | | 2x-11=5x=10 | | 5(2x-3)-4(3x-2)=18 | | -2x-23=18 | | -2x-5=18 | | 2x-7=18 | | 12=f-13-2 | | 2x+20+x=600 | | 10+b=8 | | -18.4=11p+8 | | 18.4=11p+8 | | n÷7=3 | | 7/9-x/9=1/3 | | 7+18n=42+11n | | 11.6=x/3+13 | | -3(4x-10)+12=-12x+42 | | 39-7n=20+12n | | 40n+70=30n+90 | | 11h+3h+h−12h+4h=14 | | 6x^2+12x+9=5 | | 15x-12=102 | | 12+2x=18x+x | | X+4=13x= | | 9=4r+1 | | 17=4y+1 | | 5y+68=91 | | -3|x|=-9 |